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Similarity solutions have been found for steady two-dimensional laminar flow in 
which dense fluid is emitted upwards from a horizontal plane into a laminar shear 
flow or into a uniform flow. The solutions also apply to a light fluid released a t  an 
upper horizontal surface. The Navier-Stokes equations and the diffusion-advection 
equation are simplified by making the Boussinesq approximation and the boundary- 
layer approximation, which here also implies that pressure is hydrostatic. 

For an oncoming linear shear flow representing flow near a solid surface, a 
similarity solution is obtained with depth proportional to d where x is the horizontal 
coordinate. Horizontal velocity and concentration of dense fluid both increase as 
d, so that the solution represents fluid propagating upstream along the surface, and 
diffusing vertically to be swept downstream again. Numerical solutions for vertical 
profiles of velocity and concentration are presented for a Schmidt or Prandtl number 
g between 0.71 and infinity. Two alternative sets of boundary conditions are 
possible. I n  one set, the pressure above the boundary layer is unchanged but the 
velocity profile is displaced upwards. In  the second, this displacement is forced to be 
zero with the result that a pressure gradient is generated in the outer flow. These two 
boundary conditions are known to apply to disturbances in a laminar boundary- 
layer on horizontal lengthscales respectively greater or smaller than the triple-deck 
scale. 

With a uniform velocity upstream and a stress-free boundary, representing flow a t  
a free surface, similarity solutions exist only for a plume growhg downstream from 
the source of a buoyancy flux B, with depth increasing as xs and concentration 
decreasing as x-i. When gravity has negligible effects, so that 3 = 0, the solution is 
a Gaussian plume. With finite B ,  there is an adverse gradient of hydrostatic pressure 
and the plume is decelerated so that it is deeper than in neutral flow. Numerical 
solutions for CT = 0.71 reveal that there is a maximum buoyancy flux Bcrit above 
which no similarity solution exists. This occurs with a non-zero value of the surface 
velocity. For B < Bcrit it is found that there are in fact two possible solutions. One 
has surface velocity greater than a t  the critical flux and tends to the passive Gaussian 
plume as B-tO. I n  the other, surface velocity decreases from Bcrit, reaching zero at  
a non-zero value of B. Similar behaviour is found in an asymptotic solution for very 
large g. 

1. Introduction 
When a heavy gas (one which is denser than air) is emitted into the atmosphere 

a t  ground level, buoyancy forces tend to make it spread sideways and upwind while 
a t  the same time the wind tries to transport it in the opposite direction. The purpose 
of this paper is to present some solutions of a simple, self-similar form to equations 
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describing this complex interaction in two dimensions. This means that we have 
obtained solutions to nonlinear, partial differential equations, while only having to 
undertake the much simpler numerical task of solving ordinary differential equations. 
The only simplifications needed in the incompressible, laminar Navier-Stokes 
equations are the Boussinesq approximation and the boundary-layer approximation. 
This indicates that the solutions should represent asymptotic limits of solutions of 
the full equations in the limit of high Reynolds number and small density differences 
with finite buoyancy effects. 

The results are not intended to be applied quantitatively to cases of heavy-gas 
dispersion encountered in hazard assessment of industrial plant. For one thing, those 
flows are almost always turbulent. Also our solutions are confined to two-dimensional 
geometry while generally real plumes are free to  spread transversely to the wind 
direction. They serve three other purposes : 

(i) They make clear the interplay of physical mechanisms. This understanding can 
be used to guide development of integral, bulk-property models. 

(ii) They can be used to test quantitively integral methods once they have been 
developed. 

(iii) They can be used as a numerical benchmark for more complex numerical 
methods solving the full partial differential equations. 

Although the solutions presented in this paper are for laminar flow, we have found 
that the solution method can be extended to certain turbulent flows as described by 
current higher-order closure models (Brighton 1987). Solutions for these cases will be 
directly applicable to certain heavy-gas flows and will also allow simple comparison 
of the merits of different closure schemes, and also predictions of entrainment rates 
from those models which can be incorporated into simple integral models. 

2. Equations of motion 
We imagine a constant volume flux Q of a fluid of density po being introduced into 

a flowing medium of density pl .  The fluid is supposed to float a t  an upper free surface 
or to slump over a lower horizontal surface according to whether it is lighter or denser 
than the medium. We also assume that the fluid and medium are miscible with 
binary diffusivity D and have a common viscosity v. Let A* = Ip-plI/pl where p is 
the density field in the flow and let g* be the acceleration due to gravity. The flow 
is assumed to be confined to two dimensions with horizontal coordinate x* and 
velocity component u* and vertical coordinate x* and velocity component w*. z* is 
measured upwards or downwards according to  whether the fluid is denser than the 
medium or not. The equations for steady, laminar, incompressible flow with the 
Boussinesq and boundary-layer approximations are 
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The boundary-layer approximation has been made on the assumption that horizontal 
lengthscales are much greater than vertical ones. The vertical momentum equation 
then reduces to the equation of hydrostatic balance for the pressure p*. 

3. Uniform shear upstream 
3.1. Non-dimensionalization 

Suppose there is an upstream velocity profile of the form 

u = Qz*. (3.1) 

Anticipating a solution representing an upstream intrusion, we assume a charac- 
teristic value A ,  = (po-p lJ /p l  for the density field, with p, the inlet density. We 
take horizontal and vertical lengthscales 2' and 2 respectively. The hydrostatic 
equation implies p* - p1 g*A, 2 so that the terms in the momentum equation are of 
the magnitudes 

inertia buoyancy viscosity 

Making these all the same magnitude implies 

2 = g*Ao/SZ2, 2 = (g*A,)3 /~SZ5.  13.2) 

For validity of the boundary-layer approximation, these scales must satisfy 

We therefore adopt the non-dimensionalization 

x* = 9 x ,  z* = 2 2 ,  

u* = Q%U, w* = (QX2/9) w,  

A* = A ,  A ,  p* = p1 g*A, X p .  

Equations (2.1) are now transformed into 

(3.4) 

U U ~ + W U ~ = - P ~ + U ~ ~ ,  O = - p  + A  , u,+w, = 0, uA,+wA,  = C T - ~ L I ~ ~ ,  (3.5) 

where CT = v /D ,  (3.6) 

which can he interpreted as the Prandtl or Schmidt number according to whether the 
density differences are caused by heat or by a contaminant. 

3.2.  The form of the similarity solution 
We seek a similarity solution for u of the form 

u = x'f'(7) with 7 = z / x s ,  (3.7) 

where the prime denotes differentiation with respect to 7 so that x""f(7) is the stream 
function. To match the unperturbed flow, we need u - z as z+ co and so r = s. For 
inertia to balance viscosity, we find r = t .  Hence we set 
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Substituting in (3.5) leads to 

(3.9a, b)  

3.3. Boundary conditions 
Three boundary conditions can immediately be imposed on the velocity profile : 

f (0)  = f ‘(0) = 0, f ” ( c o )  = 1. (3.10) 

The first two make the surface z = 0 a streamline with zero velocity. The third 
ensures that the velocity gradient achieves its unperturbed value a t  the top of the 
layer. For the buoyancy field we impose zero flux a t  the surface and zero 
concentration a t  infinity : 

g”(0) = 0, g’ (co)  = 0. (3.11) 

3.3.1. Relation between pressure at in jn i ty  and displacement of velocity projile 
One further condition is still needed to specify the solution of the sixth-order 

system (3.9). To obtain this we need to appeal to the theory of perturbed laminar 
boundary layers. The boundary condition on f a t  infinity in (3.10) implies 

f ’  - T-A,  f - h 2 - 7 A + B  as y - f  co. (3.12) 

Substitution of these forms into ( 3 . 9 ~ )  implies 

g(m) = A’-2B. (3.13) 

A non-zero g( 00 ) implies that existence of a pressure gradient outside the buoyancy- 
driven layer and a non-zero value of A represents a displacement of the velocity 
profile outside the layer. In general, these two quantities are linked by the nature of 
the flow induced outside the boundary-layer - the displacement of the velocity 
profile perturbs the inviscid flow above to cause a pressure gradient which can affect 
the boundary-layer flow, creating a feedback loop. This phenomenon is ubiquitous in 
perturbed boundary layers and is described by triple-deck theory (Stewartson 1974 ; 
Smith 1982), which is associated with a natural lengthscale &S where 6 is the overall 

u 

boundary-layer thickness and 
R = U,S/V % 1, (3.14) 

U ,  being the free-stream speed. (In triple-deck theory, a large-scale boundary layer 
of thickness 6 is perturbed by some disturbance which creates a much thinner inner 
boundary layer. This inner boundary layer corresponds to the buoyancy-driven layer 
in the present context.) 

There are two limits in which triple-deck theory can be simplified, as discussed 
in detail by Smith et al. (1981). For disturbances on short horizontal lengthscales, 
Y 6 &S, the outer boundary-layer displacement A is forced to be zero and a non- 
zero pressure gradient is induced, which is determined as part of the inner-layer 
solution. 

On large lengthscales, 9 > &S, the outer boundary layer is allowed to be 
displaced and a pressure gradient is induced in the outer, inviscid flow but it is too 
small to affect the inner-layer flow. 

Our similarity solutions admit either of these limiting possibilities, but the 
intermediate regime with the full triple-deck interaction appears not to allow a 
similarity form of solution. In our problem, the outer boundary-layer thickness S and 
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wall-shear IR are related by U ,  * 528, and so R = 5262/v. Hence if Y 6 52%/vi, we 
apply the sixth boundary condition 

A = O .  (3.15a) 

If 2’ B O%/vi, we apply the condition 

g(O3) = 0. (3.15 b)  

3.3.2. The recirculatory nature of the flow 

In  view of the similarity form (3.8), it appears that the point x = 0 represents the 
maximum upstream extent of a layer whose thickness and density increase 
downstream, presumably eventually matching on to some localized source of dense 
fluid. This interpretation is supported by evaluating the total buoyancy flux 

B* = g*[:u*d*dz* = g*SZX24,z f’(y)g’(p)dy. (3.16) 

By integrating (3.9b) from 0 to 03 and applying the boundary conditions it is readily 
confirmed that B* = 0. The solutions represent an upstream intrusion in which 
buoyancy drives fluid upstream against the prevailing current, but at the same time 
it diffuses upwards and is carried downstream again. At the surface there must be a 
step change in shear from its value 52 upstream to a constant negative value 52f ”(0) 
for x > 0, as confirmed by the numerical solutions below. 

J: 

3.4. The two solutions for u = 0.71 

3.4.1. Numerical method 
Equations (3.9) were integrated numerically for cr = 0.71 (representing heat 

diffusion in air) using a subroutine from the Numerical Algorithms Group Library 
(NAGLIB). With boundary conditions (3.10), (3.11) and (3.15), this is a two-point 
boundary-value problem for which the shooting method DOBHAF was used. The 
integration was carried out in the direction of increasing 7,  so one had to supply 
estimates off ”(0) ,  g(0) and g’(0) as well as the known values f(O), f ‘(0) and g”(0). First 
a solution was obtained by imposing the conditions f”(7) = 1, g(7) = 0 a t  7 = 10, 
corresponding to boundary condition (3.15 b ) .  

Some difficulty was experienced obtaining the solution for A = 0 because initial 
guesses at 7 = 0 based on the preceding solution tended to converge to the trivial 
solution of unperturbed shear flow. To overcome this, the strategy was adopted of 
taking g‘(0) as a fixed value instead of the condition A = 0. g’(0) was then increased 
in steps from its value for the case with g( 03) = 0 until A was brought down to near 
0. With the boundary values on 7 = 0 determined in this way, the subroutine then 
easily converged to a non-trivial solution with A = 0. Since g’(0) in this solution was 
nearly two orders of magnitude greater than for g ( o 0 )  = 0, the initial difficulty was 
not surprising. 

3.4.2. Results 
The final results are shown in figure 1 and some key details are listed in table 1.  
The upstream buoyancy flux is defined by 

(3.17) 
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TABLE 

Boundary condition at  infinity 

( 3 . 1 5 ~ )  (3.15 b )  
Zero displacement Zero pressure 

Shear stress f ” ( 0 )  - 1.98 -0.250 
Surface pressure, g(0) -4.02 -0.208 
Surface concentration, g’(0) 3.59 0.0457 
Displacement A 0 4.99 
Pressure a t  infinity, g (  C O )  4.91 0 

Plume thickness, 6, 2.49 4.55 
Upstream buoyancy flux, B J x  3.54 0.0258 

1 .  Main features of the similarity solutions with uniform shear flow upstream 

8 

7 

6 

5 

4 
rt 

3 

2 

1 

0 
Velocity profiles f’(7) Concentration profiles 

FIQURE 1. Similarity solutions with uniform shear profile upstream, for CT = 0.71. (a) Velocity 
profiles and (b )  concentration profiles, for the alternative boundary conditions ( 3 . 1 5 ~ )  and 
(3.15b). 

so it  represents the amount of material flowing upstream, which is equal and opposite 
to that flowing downstream so that the total buoyancy flux is zero, as required by 
(3.16). The plume thickness is defined by 

The remarkable difference in concentration in the two cases seems to mean that the 
upstream spreading of the dense material is very sensitive to the exterior flow 
conditions. When the external flow is readily displaced out of the way, only a small 
density difference is required to  maintain a region of nearly stagnant dense fluid. If 
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the external flow cannot be displaced, a much larger density difference is needed to 
drive fluid upstream and the wall flow has more of a jet-like character with an 
inflection point where the velocity gradient exceeds that in the outer flow (see figure 
1) .  The properties of the solutions in dimensional and quantitative terms are 
discussed below. 

3.5. Solution for large Schmidt or Prandtl number 

In  water-channel studies of heavy-gas dispersion, salt is often used to produce the 
density difference. This has a Schmidt number of 1035 a t  15 “C whereas Schmidt 
numbers for gases in air are generally in the range 0.6-3, so it is useful to determine 
the behaviour of the similarity solutions over a large range of (T. For (T % 1, the 
equations and boundary conditions can be rescaled straightforwardly by the 
transformation 

7 = (T-iq, f = u-%q), g(7) = (T$(r”), (3.19) 

so that (3.9) become 

while boundary conditions (3.10), (3.11) and (3.15) remain unchanged. The physical 
interpretation of this scaling is that the layer thickness is determined by diffusivity, 
a balance of diffusion with advection, rather than of viscous stresses with inertia. 

Rescaled in this form, the equations have been solved numerically for a range of 
values of u including the limiting case ( T - ~  = 0. Profiles for the values (T = 1 and (T-’ 

= 0 are compared in figure 2 for the zero-pressure boundary condition. From (3.20a), 
it is seen that in the rescaled problem, (T-’ appears only as the coefficient of the inertia 
terms in the momentum equation. From figure 2 ( a )  it is seen that the resultant 
velocity profiles are fairly similar but in the ‘inertialess’ case, a considerably larger 
density difference is needed to drive the flow (see figure 2 b ) .  Figure 3 shows the 
variation with (T of the main features of the solution as listed in table 1.  

3.6. Overall properties of the flow in dimensional terms 

This similarity solution appears to represent a wedge of dense fluid extending 
upstream from some kind of source. The overall flow is illustrated in physical terms 
in figure 4, where (3.4) has been used to restore variables to dimensional form. 
Relative to the leading edge of the dense layer as origin for x*, the plume thickness 
varies as 

8; = (vx*/S2)fSp, (3.21) 

where 8, is the number defined by (3.18). The maximum reversed velocity in the layer 
is given by 

( - u * ) ~ & ~  = (~2~vx*) f  max [-~’(Y,J)I. (3.22) 

The concentration a t  the surface varies as 

and the upstream buoyancy flux is 

BT = S 2 2 ~ ~ * ( B l / ~ ) ,  (3.24) 

with B,/x given by (3.17) with values shown in table 1 and figure 3. 



82 P. W .  M .  Brighton 

0 1 2 3 

Velocity profiles uky(7) 

Concentration profiles a-fg’(7) 

FIGURE 2. Similarity solutions with uniform shear profile upstream, for u = 1 and CT+ 03, for 
boundary conditions $(a) = 0. (a )  Velocity profiles, (6) concentration profiles. 
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FIGURE 3. Variation with u of properties of the similarity solution with uniform shear profile 
upstream for g (  03) = 0. 

FIGURE 4. Qualitative sketch of the flow field represented by the similarity solution for uniform 
shear flow upstream. 

3.6.1. Fitting the similarity solution to the rest of the flow Jield 

This similarity solution cannot represent a complete flow because the density 
increases without limit downstream. Can this form of stationary recirculatory wedge 
of fluid be set up with a suitable form of inflow downstream Z This question cannot 
be answered without a detailed analysis of the whole flow domain, but it seems a 
reasonable hypothesis that this flow could form upstream of an isolated continuous 
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steady source of dense fluid located in the horizontal surface. If this has density 
difference A,, we may enquire what size of upstream wedge is needed to achieve this 
density a t  the location of the source (this is only a rough estimate as the flow near 
the source must have a non-self-similar character). Setting A* I Z z 0  = A ,  in (3.23) and 
solving for x* gives an estimate of the upstream extent of the current 

x,* = L(”*”.). 3 

52% g’(0) 
(3.25) 

This result is rather remarkable because of the very strong dependence on the 
unpcrturbed shear stress 0. There is also an  extreme sensitivity to the choice of the 
pressure boundary condition (3.15). For zero pressure x,* is a factor 4.8 x lo5 greater 
than for zero displacement for IT = 0.7 1, from the results in table 1. 

There is no direct dependence on the buoyancy flux a t  the source in these two 
solutions, which seems rather counter to intuition. However, we can evaluate the 
upstream buoyancy flux as given by (3.24) a t  x* = x,* to obtain 

1 g*A, B, x! =&J (y). (3.26) 

For the zero-pressure boundary condition BT, is a factor 3.50 x lo3 greater than for 
the zero-displacement condition with IT = 0.71. This upstream buoyancy flux cannot 
be directly linked to the source buoyancy flux, because some of the dense fluid a t  the 
source may proceed directly downstream, and some of the downstream flux in the 
intrusion may be recirculated into the upstream flow, for instance if there is a barrier 
just downstream of the source. For emission from a source flush with the surface the 
second possibility seems unlikely, and BT, would be directly related to the source 
strength. Intrusions of intermediate length involving the full triple-deck interaction 
(and therefore non-self-similar) could be formed for intermediate values of BT,. A full 
numerical treatment or an experimental investigation would be needed to explore 
this further. 

3.6.2. Examples for laboratory conditions 
To illustrate the possible relevance of these solutions in laboratory conditions, we 

have evaluated x,* from (3.25) for a few cases. 
For a laminar boundary layer in an airstream of velocity U ,  = 1 m s-l, with 

viscosity v = 1.5 x m2 s-l, a Reynolds number R of lo3 corresponds to S = 
1.5 x 10P m. Taking 52 = U,/S and g*A, = 1 m s-’ gives x,* = 5.1 x 10-5/[g’(0)]3 
in metres. From table I this gives xt = 0.53 m for the zero-pressure condition and 
x,* = 1.1 x m for the zero-displacement condition. Both results are consistent 
with the triple-deck lengthscale RiS, which is 0.084 m. The dimensional plume thick- 
ness in terms of x,* is 

(3.27) 

from (3.21) and (3.25). For the first case this is 2.2 x lop2 m which is consistent with 
the boundary-layer approximation in the buoyancy-driven layer. For the second 
casc, with zero displacement, 8: = 1.0 x lo-’ m, so the solution is not self-consistent, 
but does imply that the upstream spreading will be negligible in extent. The 
upstream buoyancy flux B& for the zero-pressure condition corresponds to a flow 
rate B,*,/g*A, of 9.2 x m’/s. 
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For a brine inflow in water (n. N, lOOO),  -g'(O) takes the asymptotic value 
0 . 3 0 3 ~ ~ ;  = 31 from figure 3. With v = lop6 m2 s-' and U, = 0.1 m s-l, a Reynolds 
number R of 1000 implies 6 = m and so we take 52 = 10 s-'. With g*A, = 1 m s-~, 
x,* = 3.4 x lop4 m even for the zero-pressure case and so the upstream spreading 
is negligible. 

The great sensitivity to 52 in (3.25) means that only a modest change in conditions 
is needed to give a significant result. With U ,  = 0.06 m spl and S = 0.03 m to give 
R = 1800, we have 52 = U,/S = 2 spl. With the same value of g*A,,  we obtain 
x,* = 1.0 m for the zero-pressure case with 8: = 2.5 x lop3 m. Since the triple-deck 
lengthscale here is 0.20 m all the conditions of the analysis are fairly well achieved. 
The upstream flow rate of dense fluid B&/g*A, is 7.1 x 

Thus conditions needed for the occurrence of the similarity solutions should be 
readily achievable in the laboratory. 

m2/s. 

3.6.3. Experiments on arrested saline wedges 

The only experiments approaching the conditions described above are those on 
stationary gravity currents of salty water as a model of a river flow interacting with 
intruding sea water. A detailed laboratory model study of these is described by 
Riddell (1970). In  one set of experiments, he introduced an upstream flow of salt 
water into a turbulent channel flow a t  a Reynolds number of 5440, low enough for 
there to be a thick laminar sublayer in which one might observe a laminar wedge a t  
the upstream tip. Riddell measured interface heights as a function of horizontal 
position, by unspecified means, presumably by eye. The results have some qualitative 
features of our similarity solutions. For varying salt in flow rates, the length of the 
wedge varied but the tip portion always had the same profile, well approximated by 
a parabolic or cubic curve. The channel depth was 0.1016 m and the wedge reached 
a thickness of 1.5 x lo-' m in a distance of about 0.96 m from the tip. This is about 
ten times the value of S: obtained from (3.21) where 52 is taken as the value of 
the shear in the laminar sublayer u i / v ,  with u* the friction velocity. u* was 
3.2 x lop3 m s-l giving 52 = 9.9 s-l and the laminar sublayer thickness was therefore 
5v/u, = 1.6 x lop3 m, much smaller than the current depth. So turbulence may have 
had a major role in forming even the thin leading edges of Riddell's saline wedges. 

4. Uniform velocity upstream with a free surface 
4.1. Non-dimensionalization 

The other similarity solution that we have found has a uniform flow velocity U 
outside the gravity current. This would be realized physically by flow a t  a horizontal 
free surface and so the gravity current solutions could represent warm water 
discharged a t  the surface of cold, or fresh water flowing into salty. 

The dimensional arguments of 3 3.1 were based on seeking a horizontal lengthscale 
2? for upstream spreading to be associated with a given imposed density difference 
A, .  To apply this analysis in this case 522 is replaced by U and instead of (3.2) one 
finds 

& = U2/q*A,,  9 = U 5 / ~ ( g * A , ) 2 .  (4.1) 

This leads to the absurd conclusion that the gravity current increases in length if the 
density is decreased or the flow velocity increased. 

The scaling does make sense however if i t  is applied to flow downstream from a 
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source. Then A ,  can be interpreted as the density difference a t  some given distance 
9 and we have instead of (4.1) 

A? = ( v 9 / U ) a ,  g*A,  - U % / ( v 9 ) ; .  (4.2) 

The layer thickness is the familiar scaling of the flat-plate boundary layer. We 
therefore adopt the following non-dimensionalization : 

(4.3) i 
x* = 9 x ,  z* = A?z, 

u* = uu, w* = ( U X / 9 )  w, 

A* = [U:/g*(v9);]  A ,  p* = p1 U’p. 

The non-dimensional form (3.5) of the equations of motion still applies. 
Note that A ,  is an arbitrary choice, purely a measuring scale. If A ,  is replaced by 

ad,, 9 by ci-29 and A? by a-’X then the dimensionless equations remain the same. 

4.2. The form of the similarity solution 
Using (3.7) for the velocity distribution, we can first set r = 0 to ensure matching 
with the uniform flow when 7 + 00. The inertia-viscous balance now requires s = !j as 
for the flat-plate boundary layer. The definitions of the similarity profiles become 

with 

The concentration A now decays with distance instead of increasing as for the shear 
profile in (3.8). This confirms that the solutions will represent a dense downstream 
plume. The momentum and advection4iffusion equations become 

2 (4.5a, b )  f “‘ + 18’’ = 1 2yg’, g”’ + tu( fg” +f’g’) = 0. 

4.3. Boundary conditions 
The boundary conditions on the velocity profile are : 

f(0) =f”(O) = 0, f’(0O) = 1. (4.6) 
The first ensures zero vertical velocity at the surface, the second zero shear stress 
there and the third ensures matching with the free-stream velocity. For the 
concentration profile there are two conditions : 

g”(0) = 0, g(c0) = 0, (4.7) 

giving zero surface flux and zero pressure and concentration a t  infinity. These 
conditions can be used to  integrate (4.5b) once to  give 

g”+fufg‘ = 0. 

Indeed this can be solved to give g‘ explicitly as 
(4.8) 

(4.9) 

but the form (4.8) is more convenient for numerical solution. 
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4.3.1. The buoyancyfiux 

To obtain a sixth condition for (4.5), we need to specify the total buoyancy flux 

H = Jo f’g’dy. (4.10) 

This quantity is regarded as a free parameter so that there is a range of similarity 
solutions for varying B. In  dimensional terms 

in the plume: m 

B = g* lom u*d* dz*/U3, (4.11) 

i.e. the dimensionless buoyancy flux per unit width. 

applying the boundary conditions. 
That B is a constant independent of x is seen by integrating (4.5 b) from 0 to 00 and 

4.4. Solutions with small buoyancy fiux 

The parameter B expresses the ratio of buoyancy and inertia forces in the plume. 
When 3 < 1, one expects the plume to behave passively, i.e. to undergo advection 
and diffusion without affecting the velocity field significantly. To verify this 
explicitly it is convenient to set g‘(0) = /3 and take the limit p- 0. The velocity and 
concentration profiles are expanded as 

f ( r )  = r+Pf1(r) + O(P”), d r )  = Pg*(r) +O(P”). (4.12) 

From (4.9), we find that the concentration has the passive Gaussian profile 

gi(y) = e-W. (4.13) 

Hence the buoyancy flux (4.10) is given by 

B = p r  g;(y) dy + 0(p2)  = p&/a. 
0 

(4.14) 

The solution for fl is useful for illustrating the influence of rs on the velocity field. It 
satisfies the linearized form of ( 4 . 5 ~ )  : 

and boundary conditions 
fl(0) = f ;(o) = 0, f i(O0) = 0. 

(4.15) 

(4.16) 

The complete velocity profile is given by 

The surface velocity is given by 

(4.18) 

From (4.17), it is seen that the buoyancy of the plume causes i t  to slow down a t  the 
surface - the horizontal gradient of hydrostatic pressure is adverse. At large cr the 



88 Y. W .  M .  Brighton 

plume itself is confined to a depth of O ( d )  but the fluid outside the plume is slowed 
down by viscous effects over a vertical scale of O(1). At small a the diffusion of 
matter is much faster than that of momentum and the hydrostatic pressure drives 
an inviscid flow on the scale 7 = O(n- i )  with a thin viscous adjustment region of O( 1) 
thickness to accommodate the zero shear stress condition a t  7 = 0. 

4.5. Numerical solutions for a = 0.71 
Equations (4 .5a)  and (4.8) were solved numerically using the NAGLIB shooting- 
method algorithm DOBHAP, already used for the shear-flow problem. The constraint 
(4.10) fixing the buoyancy flux a t  a desircd value was not convenient for the 
numerical method ; instead the inverse procedure was adopted of fixing the surface 
concentration g’(0) and determining R from thc solution. Thus f (O) ,  f ” ( 0 )  and g’(0) 
were regarded as known initial values for the fourth-order problem (note that g does 
not have to  be solved for) and the shooting technique was directed at satisfying 
f ’ ( c o )  = 1. (The condition g’(co) = 0 is satisfied automatically in view of (4.9).) The 
calculation was started a t  small values of g’(0) for which f ‘ (0 )  could be estimated 
from the linearized solution of $4.4 in order to start the algorithm off. 

This method was only successful up to a point: it proved impossible to find 
solutions beyond g’ (0)  = 0.192 when f ’ (0)  = 0.564. The nature of the difficulty was 
revealed by using f ’ ( 0 )  as the specified variable arid letting g’(0) vary in order to 
satisfy the condition a t  infinity. Solutions were found for f ’(0) decreasing to zero, for 
which g’(0) and B also decreascd. In other words there exists a maximum possible 
buoyancy flux R = 0.341 above which there is no solution to the similarity equations 
and below which therc are two. 

4.5.1. Velocity and concentration projiles 

Figure 5 shows velocity and concentration profiles in what we have termed the 
‘ supercritical ’ mode with the surface velocity reduction intermediate between 0 as 
for a passive plumc and the value of 0.564 at the maximum buoyancy flux. 

In figure 6 we show that there are also solutions down to f ‘ ( 0 )  = 0 in which 
decreases of buoyancy flux are associated with increases in the surface velocity 
reduction. In this ‘subcritival ’ mode there is a distinct deepening of the plume and 
flattening of the concentration profile. Solutions can also be computed for f’(0) < 0 
but these are physically meaningless near the surface 7 = 0. 

Figure 7 summarizes the variation of key flow propertics with buoyancy flux. The 
plume depth can be characterized in several ways : the displacement thickness, 
defined as in classical boundary-layer theory, is 

4 = SP(I-f’)d4 = lim[r-f(7)1 
rl+= 

The width of the velocity profile can be defined by 

(4.19) 

8, = 4/11 -f ’@)I. (4.20) 

The plumc depth is given as in (3.18) by 

(4.21) 
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FIGURE 5.  Similarity solutions with uniform flow upstream, for r = 0.71. (a )  Velocity profiles 
and ( b )  concentration profiles, for the supercritical mode. 
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FIGURE 6. Similarity solutions with uniform flow upstream, for = 0.71. (a )  Velocity profiles 
and ( b )  concentration profiles, for the subcritical mode. 
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FIGURE 7 .  Uniform flow upstream. Variation of (a )  surface velocity and surface concentration and 
( b )  displacement thickness, velocity profile width and plume thickness, with the buoyancy 
parameter B for CT = 0.71. 

4.6. Solution for large Schmidt or Prandtl number 

The solution for nearly passive flow in $4.4 revealed the essential structure for the 
case v % 1. The slowly diffusing contaminant remains confined to a thin layer of 
thickness O ( d )  in which the flow is dominated by viscosity. In the outer layer, for 
7 = O( l ) ,  gravitational effects are absent except for 7 --f 0. This can be described by 
matched asymptotic expansions. 

In the inner layer, the problem is rescaled by defining 
1 7 = cq, (4.22) 

and the solutions are expanded in powers of d :  

f (7 )  = v-y&) + v-%(7) + O(&), g ( 7 )  = cl%jl(T) + O(1). (4.23) 

Equations ( 4 . 5 ~ )  and (4.8) yield 
- - 

f ; ” = O ,  fP’=Ljj-’ 2 91, &+tLq1 = 0. (4.24 a-c) 

4 FLM 192 
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The solutions satisfyingfi(0) =E(O) = 0 for i = 1 , 2  and &(m)  = 0 are 

(4.25 a-C) 

To lowest order the flow is a uniform velocity a1 and the concentration has a 
Gaussian profile with (scaled) surface concentration y .  

To relate a, and y to the imposed buoyancy flux, we have to solve the problem in 
the outer region where g is exponentially small and sofsatisfies the classical Blasius 
equation 

f’”+2f”’ = 0. (4.36) 

To match to the inner region, consider the small-7 behaviour: 

f -  a 1 r + ~ a , 7 2 + O ( 7 3 )  as ~ + 0 .  (4.27) 

In  the inner variables this can be written as 

f - u-h] Fj+ gu-la, r” + O( &). (4.28) 

The first term matches the solution ( 4 . 2 5 ~ )  while the second term matches (4.25b) 
if 

y = ala,. (4.29) 

This now gives an algorithm for generating these large-u solutions numerically. The 
Blasius problem (4.26) is solved for given values of f’(0) = a1 and a,  = f ” ( O )  is 
determined as part of the solution. Equation (4.29) then gives the surface 
concentration and the overall plume properties are obtained as 

( 4 . 3 0 ~ )  

(4.30 b )  

(4.30 c) 

(4.30d) 

(4.30e) 

These results are consistent with those of $4.4 when y 6 1.  
Figure 8 shows the variation of the basic flow parameters (4.30) with B for 

supercritical and subcritical plumes. The form of the curves forf’(0) and g’(0) is very 
similar for u = 0.71 in figure 7,  except that  the critical buoyancy flux is given by 
B = 0.16af. The layer thickness in figure 8 ( b )  has a somewhat different form because 
as B -j 0 for the subcritical flow, so also a ]  0 in (4.26) and the solution becomes the 
flat-plate Blasius solution itself with finite displacement thickness 6, = 1.821 and 
shear a, = 0.3321. In  fact this is a singular limit with 6,+ co because the zero 
velocity a t  the surface invalidates the scaling arguments for the inner boundary 
layer. However this very special case is not explored further here. 

4 .7 .  Solutions with zero velocity at the surface 

In  the problem defined by ( 4 . 5 ~ )  and (4.8) with boundary conditions (4.6) and (4.7), 
it is possible to replace the boundary conditions on f ” ( 0 )  by the no-slip condition 
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FIGURE 8. Uniform flow upstream. Variation of (a )  surface velocity and surface concentration and 
( b )  displacement thickness, velocity profile width and plume thickness with the buoyancy 
parameter B for the asymptotic solution in the limit CT+ co. 

Critical buoyancy Critical surface 
U flux B concentration g'(0) 

0.5 0.113 0.058 
0.1 0.102 0.079 
2.0 0.090 0.110 
6.8 0.084 0.217 

TABLE 2. Results for the no-slip case from Schneider (1979) and Afzal & Hussain (1984) 

f'(0) = 0. This represents emission of the buoyant material a t  the leading edge of a 
flat plate and in this case increasing B causes perturbations from the Blasius solution. 
This problem has been solved numerically by Gill & del Casal (1962) and Schneider 
(1979), as a combined forced and free heat convection problem in which the 
temperature of a horizontal flat plate is inversely proportional to the square root of 
the distance from the leading edge. 

Schneider (1979) discovered that there was a maximum value of the negative 
buoyancy beyond which solutions did not exist. Later Afzal & Hussain (1984) and de 
Hoog, Laminger & Weiss (1984) discovered the existence of the second, subcritical 
solution. The results of these authors are summarized in table 2 after conversion to 

4-2 
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H 

FIGURE 9. Qualitative sketch of the flow field represented by the similarity solution for uniform 
flow upstream. 

our notation. It is seen from table 2 that  the critical buoyancy fluxes are smaller in 
this case, perhaps because the plume is being emitted into a slower-moving flow. The 
trend with increasing u appears to be opposite to that for our free-surface case, as 
in (4.30b), but it appears that  the large-u analysis has not been carried out for the 
no-slip case. 

4.8. Overall properties of the $ow in dimensional terms 

Unlike the similarity solution for the shear profile upstream, this solution appears to 
represent a complete flow field downstream of a source of buoyancy near a horizontal 
free surface. Figure 9 is a schematic diagram of the overall flow field from which it 
is seen that the parameter B is related to the source volume flux per unit width 

(4.31) 

The dimensional plume thickness is given by 

s; = G,(VX"/U)+, (4.32) 

and it is perhaps noteworthy that as buoyancy increases so also the plume thickness 
increases (see figures 7 and 8). The density difference at the surface is given by 

A* = (Ut/g*v&*l)g'(O). (4.33) 

The gradient Richardson number is also of interest for questions of flow stability. It - 
is given by 

(4.34) 

Thus the maximum Richardson number remains a constant downstream. Buoyancy 
effects remain of equal significance no matter how much dilution occurs. 

4.8.1. Flow near the source 

The parabolic plume profile means that in fact the boundary-Iayer assumptions 
break down near the source where x* = 0. Since the density (4.33) becomes infinite 
there, i t  is clear that a local solution of the full Navier-Stokes equations would be 
needed to resolve the flow structure there. This is just the same difficulty as arises in 
the solution for the flat-plate boundary layer a t  the leading edge and there is no 
reason to expect that i t  would affect the validity of the similarity solution 
downstream where x* is much greater than the source dimensions and the Reynolds 
number Ux*/v is large. 
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4.8.2. Flow from a source above the critical buoyancy f lux 
The non-existence of a similarity solution for values of B greater than the critical 

value does not necessarily mean that there is no steady solution of the equation in 
this case. It seems highly likely that any such solutions must involve upstream 
propagation of the buoyant fluid. However, our scaling analysis of $4.1 indicates that  
the upstream intrusion cannot stabilize at a finite distance - but in order to conserve 
buoyancy, the upstream intrusion cannot extend to infinity for a finite source 
strength. Hence it would appear that only unsteady solutions are possible. 

A numerical study by Valentine & Kao (1984) supports this conclusion. They 
calculated laminar flows in which a constant source of light fluid with Schmidt 
number 1 was switched on a t  the free surface of a channel flow with a Reynolds 
number 200. The volume flux of buoyant fluid was 2Ck-25 YO of the upstream volume 
flux in the channel. Valentine & Kao found that for B > 1.38 part of the inflow 
propagated upstream without reaching any limiting distance. They also computed a 
case with B = 1 in which it appeared that upstream propagation did not occur. 

This critical value of B is considerably larger than we have found in the similarity 
solutions. The lack of quantitative agreement is probably due to the low Reynolds 
number and the large displacement thickness of the inflow relative to the channel 
depth, which must cause a significant pressure gradient tending to oppose the 
hydrostatic backflow. 

5. Concluding remarks 
I think that one can identify four main features of the mechanics of dense fluid 

emission into an ambient flow in two dimensions, as represented by these similarity 
solutions. While based on results on laminar flow, these features may also apply to 
turbulent flows such as heavy-gas emission over a horizontal surface, cooling-water 
discharges into flowing streams or rivers, and sea-water penetration into river 
mouths. 

First, the extent of steady upstream spreading from the source of buoyant fluid is 
very sensitive to the shape of the oncoming velocity profile and also to external 
pressure gradients. The existence of two solutions with widely different properties for 
different lengthscales of intrusion into a uniform shear flow was caused by the 
different ways a pressure gradient induced by the oncoming flow affected the 
buoyancy-driven layer. The pressure gradient was caused by the displacement effect 
of the intrusion itself, but in general there might be other pressure gradients caused 
by the presence of an obstacle or the source of dense fluid downstream. Such 
externally induced pressure gradients are not normally considered in heavy-gas 
dispersion models a t  all. In  turbulent flow, Jirka & Arita (1987) have demonstrated 
a sensitivity of the head shape of a density current or wedge to local velocity 
gradients, or the presence of small obstacles. It is not clear whether this is related to 
the mechanism described in this paper, for Jirka & Arita provide an explanation 
based on inviscid flow dynamics. 

Secondly, the flow into a uniform velocity stream admits two possible states for 
the same buoyancy influx. I have termed these ‘supercritical’ when the plume is 
carried along a t  a fairly high speed and so remains shallow and develops a relatively 
small adverse pressure gradient, and ‘subcritical’ when the dense layer is deep and 
so moves rather slowly because of the large gradient of hydrostatic pressure, 
resulting in a low buoyancy flux. I am not sure whether this phenomenon is related 
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to the existence of critical flow in hydraulics, but one difference is that viscous drag 
from the free stream is a key factor in the mechanics here. 

The third feature is linked to  the second. There is a maximum buoyancy flux for 
which a steady plume exists. If a larger buoyancy flux is emitted then it appears that  
upstream propagation will occur. The upstream front will propagate indefinitely, not 
reaching any finite steady length. 

The fourth feature is that contrary to what one might naively expect, negative 
buoyancy increases the depth of these plumes compared to passive dispersion. This 
is almost certainly a purely two-dimensional effect, as in three dimensions lateral 
spreading can occur making the plume thinner than its passive equivalent. In 
turbulent flow this conclusion might not apply because increasing stratification 
would tend to reduce mixing rates. 

These features will require confirmation by experiment and by numerical solution 
of the partial differential equations. 

This work was funded by the UK Health and Safety Executive. 
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